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ON MOTIONS ASYMPTOTIC TO TRIANGULAR POINTS OF LIBRATION OF 
THE RESTRICTED CIRCULAR THREE-BODY PROBLEM* 

A.P. ~YEVandG.A, S~~~~rNA 

The problem of the trajectories, asymptotic to the equilibrium positions 
of an autonomous Hamiltonian system with two degrees of freedom, is 
studied, in the case when the characteristic equation has pure imaginary 
roots. The results are used to find all the motions, asymptotic to the 
triangular points of libration, stable to a first approximation of the 
plane circular restricted three-body problem. 

1. Formulation of the problem. The circular three-body problem admits of five exact 
particular solutions, namely the points of libration Li (i = i,2, . . . . 5) for which the relative 
distances between the bodies are constant /I/. In stellar mechanics and its applications, 
there is great interest in the natural families of solutions of the equations of motion, for 
which the configuration formed by three moving bodies under the influence of forces of mutual 
gravitational attraction when there are no active control forces, tend asymptotically, as 
t-+-&co, to configurations corresponding to points of libration. 

A particularly important case for applications is the plane circular restricted three-body 
problem. The motions of a body of infinitesimal mass, asymptotic to the rectilinear points 
of libration L,, L,,La of the problem, were studied in detail in /2-5/; the motions asymptotic 
to the triangular points of libration (TPL) L,,L, for values of the parameter p satisfying 
the condition 27cl(1 --)>I, were studied in /4-7/ (if the sum of the masses of the main gravi- 
tating bodies is taken as unity, when p is the mass of the lesser one). 

The analysis in /2-7/ is based on the theory of asymptotic motions developed by Lyapunov 
and Poincar&. This theory gives the sufficient conditions for the existence of asymptotic 
motions and a constructive means of obtaining them in the form of series. One of the basic 
conditions for it to be applicable is that there exist in the linearized system of equations 
of the perturbed motion at least one non-zero characteristic number. This condition is 
satisfied in /2-71. 

If we have 

o< 27p (1 - FL)<1 0.1) 

the roots of the characteristic equation of the linearized system of the perturbed motion in 
the neighbourhood of the TPL are purely imaginary. Hence the characteristic numbers are zero 
for p which satisfy (1.1) (the'stability condition forL,and L, to a first approximation), 
and the Lyapunov and Poincar; theory of asymptotic motions is not applicable. 

In the present paper we solve the problem of the motions, asymptotic to the TPL, of a 
body of infinitesimal mass in the plane circular restricted three-body problem for values of 
the parameter p in the domain (1.1). The solution is based on our study in Sect.2 of the 
problem of the existence and construction of the solutions , asymptotic to the equilibrium 
position, in the autonomous Hamiltonian system with two degrees of freedom in the case when 
the characteristic equation has purely imaginary roots. 

2. On the asymptotic motions of an autonomous Hamiltonian system with two 
degrees of freedom. Consider the system of differential equations 

&lr aH +i ai 
x=-F 

fiP* dt=-agi (i==1,2) f2.f) 

We shall assume that the origin ql = qs=pz = pa=0 is a solution of this system, and 
that the Hamiltonian can be written as a convergent series in its neighbourhood 

H = Hs +Hg+Hd+-... $_Hb -t-..* (2.2) 

whereLikis a form of degree k in ql,q*,plrpa with constant coefficients. 
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System (2.1) has the energy integral H(q,,q,,p,,p,)=h. It is obvious that h = 0 in 
motions asymptotic to the origin, i.e., the asymptotic trajectories (if they exist) must lie 
at the zero energy level H = 0. 

If the Hamiltonian (2.2) is of fixed sign, it can be zero only at Qi =pi = O(i =1,2), 
so that in this case there are no solutions of (2.1) which are asymptotic to the origin. 

Now let H, (and hence H also) be of alternating sign, let the linearized system (2.1) 
with Hamiltonian H, be stable, and let the roots +io,,*io, of the characteristic equation 
be purely imaginary and distinct (or> o,> 0). In this case, given a suitable choice of 
variables Qj* pj(j = 1, 2) (realized e.g., by the Birkhoff transformation /8/) the expansion 
(2.2) can be reduced /l/ to the following normal forms: 

a) with third-order resonance (01 = 2%) 

H = olrl - Oara + XrraV < + O, (2.3) 

b) with fourth-order resonance (or = 30,) 

H = o,r, - azrz + czoria + cllrlr'lr, + colrzz + Xzral/rx + 0, (2.4) 

c) when there is no resonance up to and including the fourth order (or# og, 2q,, 30,) 

JI = olrl - %ra -I- cdl2 -I- c,,r,r, -I- colr2’ ,+ 0, (2.5) 

and ajV pj, ckl are constants; 0, and 0, denote series in powers of qj, pj starting with terms 
of not lower than the fourth and fifth orders respectively. 

Since motions asymptotic to the origin are only possible at the isoenergetic 1evelH = 0, 
this is the level that we consider. Solving the equation H = 0 for r,, we obtain: 

a) with or = 20, 

r, = -K (rlr ‘PG cpz) = 2rl + 2w;1wll/rl + K@)@x, %; CPA 

b) with wl= 3w, 

(2.6) 

rz = --K (rrr (~1; CPZ) s 3rr + o,-' &, + 3c,, + 9c,, + 31/&J rlz + K(‘ls) (rI, ‘pl; QJ.J 

c) with ol# 02, 20,, 30, 

(2.7) 

The functions K(r,,cp,; qa) in (2.6)-(2.8) are periodic in 'pl and q%, while Kc'), K,(') 
denote terms of not lower than order 1 in rr. 

The equations of motion at the level H = 0 (Whittaker's equations /9/) have a canonical 
form with Hamiltonian K(i,,cp,; ‘p& the roles of momentum and coordinate are played by rr and 
'pr respectively, while the independent variable is qe. 

It follows from the equations of motion corresponding to Hamiltonians (2.3)-(2.5) that 

dm& = -% + @ (rr, r,, 'Pi, CPA (2.9) 

where, as r1 + r, --+ 0, the function @ tends to zero uniformly with respect to $~r and 'pz. In 
a sufficiently small neighbourhood of the origin, 'pa is a monotonically decreasing function 
of time, so that, in the problem of the motions, asymptotic to the origin, qa plays the role 
of (-t). 

If there are no resonances up to and including the fourth order and we have 

DPO 
or if there is the resonance or = 30, and we have 

(2.10) 

I czo + 3c1, + 9% I > 3 V3 (aaZ + Pa? (2.11) 

then the origin rr = 0 (of the plane with polar coordinates 1/z, cpl) is surrounded by 
invariance curves arranged arbitrarily close to the point r,=O[l,lO]. In these two cases, 
therefore, there are no trajectories, asymptotic to the origin; otherwise, the uniqueness of 
the solution of the Cauchy problem for differential Eqs.(Z.l) would be violated. 

Below we consider the problem of the asymptotic solutions in the case of resonance 
o1 = 20, with ala+ flr2#0, and also in the case of resonance or = 30,* when inequality 
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(2.11) holds with the opposite sign. Notice that in these, as distinct fromtheprevious two 
cases, the equilibrium position ~=pj = 0 (I= 1,2) of system (2.1) is unstable /l/. 

Thus, let or = 20,. The equations of motion at the level 4-O will be canonical with 
Hamiltonian K given by (2.6). Assuming that ala f &"# 0, we make the change of variables 
r,, cpl+p, 6 in accordance with the relations 

‘p*=++u*-29, -8, r*=+pp (p>O) (2.12) 

sing ~-5 1 61 ’ coso,=.-+, 8,=l/cQf@ 

We can regard p,6 as polar coordinates in the Gz@ plane: 

2 = p cos 6, y = p sin 9 

In the new variables the equations of motion become 

s =PF?F(~) + S(P, 9; qpz), s =PW~) + R(P, 8; 9%) 

(F (0) = -3 sin 6, G(0) = cos 8) 

(2.13) 

(2.14) 

where the functions 8 and R can be written as series, convergent in a neighbourhood of the 
origin, in powers of p with bounded coefficients, periodic in 6 and vat where the series 
start with terms of not lower than the second and third respectively. 

we can apply to system (2.14) the results of /X-13/ concerning the behaviour of the 
trajectories of two differential equations in the neig~ourho~ of a singular point. The 
fact that the right-hand sides of the equations considered in /ll-13/ do not contain the 
independent variable explicitly proves to be of no importance here, since, to apply these 
results, it suffices that, for some E > 0, the functions 8 and R tend to zero as P-+0 
faster than pl+= and pzte respectively, and that this convergence be uniform, not only with 
respect to the variable 0, but also with respect to ma. This condition is satisfied for 
system (2.14). 

0x1 repeating almost exactly the arguments of /ll-13/, we find that the trajectories of 
system (2.14) can enter the origin only along the directions given by the angles e = e*, 
where 9, is a root of the equation F(6)= 0; if 6* is a root of odd multiplicity and GdFlde 
is negative fpr e = e*, then there is a unique integral curve entering the origin in the 
direction 6 = 6*. 

Using the expressions for F and G, we find that system (2.14) has precisely two asymp- 
totic trajectories, entering the origin: one at an angle 6* =x as qPa-++m, and the other 
atan angle e,=o as ~a-+-wm. 

The behaviour of the trajectories of system (2.14) in the neighbourhood of the origin 
is shown in Fig.1. The direction of the arrows corresponds to increasing 'pz fi.e.,decreasing 
t). 

The analyic form of the asymptotic trajectories can be found by passing in system (2.14) 
to Cartesian coordinates x,y in accordance with (2.13) and applying the results of /14/, 
Chapter 3, Sect.3 to the transformed system. We find that the solutions of system (2.141, 
corresponding to the asymptotic trajectories t can be written for sufficiently large values 
of f’pll as series in powers ofrpz+, c, where c is an arbitrary constant. As I%l-+% r 
and y have order / ‘pz I-‘. 

Using the solutions p (cp,,c),@(cp,,c) of system (2.141, we can obtain from (2.12) and (2.6) 
expressions for rl,cpl, and rz in terms of the variable cp,and the arbitrary constant c. On 
substituting these expressions into (2.9), we can then find the dependence of 9% on the time 
t by means of a quadrature. Thus, a further arbitrary constant appears. In short, the ex- 
pressions for the asymptotic solutions inthe initial variables qj, pj (j = *,2) contain two 
arbitrary constants. 

To find the asymptotic solutions approximately, we use the equations of motion with 
Hamiltonian (2.31, where we discard terms of higher than the third order in 41, P, (1 = $7 2). 
We then find that the solutions, asymptotic as t-+&m to the origin gj=pj=O(j=;f,2), 
of system (2.1) can be written approximately as 
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Fig.1 Fig.2 

Here we take simultaneously either only the upper, or only the lower, signs; cl,cz (cl>. 0) 
are arbitrary constants. 

Now let there no no third-order resonance,butletus have fourth-order resonance w1 = 30, 
and inequality (2.11) with the reverse sign. We introduce into the canonical equations with 
the Hamiltonian K of (2.7) the new (non-canonical) variables in accordance with 

In the new variables the equations of motion at energy level R = 0 will be 

-$ = p2F (0) + 0 (P, 0; CPA, $ = p3G (0) + R b ‘J; rp,) 

( F (13)~ sin y - sin tl, G(8)= 
+ cam 8, y = arcsin cm + 3Sl + 6% 

3I/V6, > 

(2.16) 

where 8 and R are analytic functions of p in the neighbourhood of the origin, whose series 
expansions have bounded coefficients, periodic in 8 and qa and start with terms of not lower 
than the third and fourth orders respectively. 

In the same way as in the above case of third-order resonance, we can apply the results 
of /ll-14/ to system (2.16). We find that it has just two asymptotic trajectories, entering 
the orign: one at an angle 8, = n-y as (p2++m, and the other at an angle e* = y as 
'pz+-m. As 1 ‘pz I--t co, x and y have order 1 'ps I-'/*. The behaviour of the trajectories in 
the neighbourhood of the origin is shown in Fig.2 (we take Y > 0). 

In the initial variables t,qj,Pj(j = 1,2) we have two two-parameter asymptotic solutions, 
tending to the originqj spj = 0 (j= 1,2). Weobtaintheirapproximateexpressions fromtheequations 
of motion with Hamiltonian (2.4), in which we neglect terms of the fourth order and above in 
gj, pj (j = 1, 2). We have 

qr = *qz* cos (3x, + 0% 7 y), q2 = - 1/3%* sin x2 (2.17) 

p1 = iqa* sin (3x, -I- o2 7 y), pz = I/Qz* COS X2 

Here, we take simultaneously either only the upper, or only the lower, signs; cl* % (5 > 
0) are arbitrary constants. 

Combining our results, we obtain the following theorem on the solutions of system (2.11, 
asymptotic tothe origin as t-t&-m 

Theorem 1. If the Hamiltonian H is of fixed sign, there are no asymptotic solutions. If 
H is of alternating sign, and the roots of the characteristic equation of the linearized 
system (2.1) are purely imaginary fiWl,-&o,, then 1) when there are no resonances up to and 
including the fourth order (or# oz, o,# 20,, o,# 30,) and we have 

c*O%2 + Cll~l% + cOeo12 # 0, 

or if there is a fourth-order resonance 01 = 30, and we have 

I %I + 3% + km I > 31/3 (%,2 + 822) (2.18) 

there are no asymptotic solutions; 2) if there is third-order resonance or = 20, and we have 
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a12 + B12# 0, 

or if we have fourth-order resonance o1 = 30, and we have the reverse inequalities to (2.18), 
there are just two two-parameter asymptotic solutions as described above, and there are no 
other asymptotic solutions. 

3. Motions asymptotic to triangular points of libration (TPL). Let E,q be 
the coordinates of a body of infinitesimal mass in the Cartesian coordinate system L&I with 
origin at the libration pointL,; the L,,E axis is in the direction of the line from the body 
of greater finite mass to the body of lesser finite mass, while the direction of shortest 
rotation from L4g to L,q is the same as the direction of rotation of the bodies of finite 
mass. The length and time measurement units are such that the distance between the finite 
masses and their angular velocity of rotation along the circular orbits about the common 
centre of mass are unity. 

For values of the parameter )A of domain (l.l), the Hamiltonian (2.2) of the plane circular 
restricted three-body problem is of alternating sign, and the roots of the charactersitic 
equation of system (2.1), linearized close to L,,are purely imaginary and distinct: Fio,, 
+o, (or> oa>O) /l/. For the two values of )J of domain (1.1): 

~1 = II,--1/1833/90, pZ = Va - 1/213/30 (3.1) 

we have third-order (or = 20,) and fourth-order (or= 30,) resonance respectively. 
In domain (1.1) the TPL are Lyapunov stable for all p except p1 and pZ, at which we have 

instability /l/. On the basis of this result and the symmetry properties of the equations of 
motion, it was shown in /4/ that, for p of (1.1) not equal to values (3.1), there are no 
motions asymptotic to TPL in the circular restricted three-body problem. The same conclusion 
(without using the symmetry properties) can be obtained by using Theorem 1. Admittedly, 
Theorem 1 then has to be generalized to the case when condition (2.10) is violated (which is 
possible in domain (1.1) /l/l. This generalization is similar to that given in Chapter 4 of 
the book /l/ of the Arnol'd-Mozer theorem on the stability of the equilibrium positions of an 
autonomous Hamiltonian system with two degrees of freedom. 

On the basis of Theorem 1, we consider the problem of the motions, asymptotic to the TPL, 
of a body of infinitesimal mass at the resonance values (3.1) of the parameter p. Using the 
approximate expressions (2.15) and (2.17) of the asymptotic solutions, and the expressions 
for linear normalization and the numerical values of the coefficients of normal forms (2.31 
and (2.4) of the Hamiltonian (/l/, Chapter 7, Sect.41, we find that, at third-order resonance 

ml= 2% (CL = K), the motions of the body of infinitesimal mass are given by 

E =$ (-4,273 sin cp I2.326 sin 2~ T 0.524 cos 2cp) + . . . (3.2) 
n =II, (2.156 sin cp - 1.560 cos 'p T 0.635 sin 2~ &- 

1.576 cos 2~) + . . . 

Here, the upper sign refers to the motion, asymptotic to L, as t-s +m, and the lower, 
as t-+-c-. 

Similarly, at fourth-order resonance 01=3~,(p = ps), for the motions asymptotic to L, 
as t--,-Em, we have 

5 = $ (-7.466 sin cp - 1.411 sin 3rp + 2.512 cos 3cp) + . . . (3.3) 
q = t# (4.015 sin cp - 2.009 cos cp - 0.947 sin 3cp - 

1.858 cos 3cp) + . . . 

f/m t - 0.061 In (1 + 22.904&) + f! cp = -fT 

and for the motions, asymptotic toLdas t-+-x 

5 =I# (-7.466 sin cp + 0.434 sin 3~ - 2.348 cos 39) + . . . 
q =11, (4.015 sin cp - 2.009 Cos 'p + 1.541 sin 3m + 

1.404 cos 39) + . . . 

*= 1/l,- 2~.904aat ’ ‘p = G t + 0.061 In (1 - 22.904dt) + fi 

(3.4) 

In (3.2-(3,4), a and 6 (a>O) are arbitrary constants, while the dots denote terms of 



order ctl of higher. 
We have thus proved: 

Theorem 2. In the plane restricted circular three-body problem, for values of the par- 
ameter p from domain (1.11, trajectories asymptotic to the triangular libration point L, exist 
only when f~=p~ and p=M2. These trajectories are given by (3.2)-(3.4); there are no 
other asymptotic trajectories to L,. 

The asymptotic trajectories (3.2)-(3.4) twist in a spiral fashion at the origin, i.e., 
at the libration point L,. The trajecories asymptotic to L, can be found from (3.2)-(3.4) 
by using the symmetry properties of the equations of motion given in /4/. 
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